The Shape of Neural Dependence
نویسندگان
چکیده
The product-moment correlation coefficient is often viewed as a natural measure of dependence. However, this equivalence applies only in the context of elliptical distributions, most commonly the multivariate gaussian, where linear correlation indeed sufficiently describes the underlying dependence structure. Should the true probability distributions deviate from those with elliptical contours, linear correlation may convey misleading information on the actual underlying dependencies. It is often the case that probability distributions other than the gaussian distribution are necessary to properly capture the stochastic nature of single neurons, which as a consequence greatly complicates the construction of a flexible model of covariance. We show how arbitrary probability densities can be coupled to allow greater flexibility in the construction of multivariate neural population models.
منابع مشابه
NEURAL NETWORK PREDICTION OF THE EFFECT OF SEMISOLID METAL (SSM) PROCESSING PARAMETERS ON PARTICLE SIZE AND SHAPE FACTOR OF PRIMARY α-Al ALUMINUM ALLOY A356.0.
Abstract: Problems such as the difficulty of the selection of processing parameters and the large quantity of experimental work exist in the morphological evolutions of Semisolid Metal (SSM) processing. In order to deal with these existing problems, and to identify the effect of the processing parameters, (i.e. shearing rate-time-temperature) combinations on particle size and shape factor, ...
متن کاملExperimental and Neural Network Prediction of Elongation and Spread after First Stage of Fullering
Fullering process is a type of open die forging. In this research, elongation and maximum sideways spread in final shape of a billet after the first blow of a fullering process are predicted by designing a back propagation multilayer perceptron neural network. Several experiments are conducted using lead as the model material. Billets with three different square cross-sections are used in these...
متن کاملApplication of Artificial Neural Networks (ANN) and Image Processing for Prediction of the Geometrical Properties of Roasted Pistachio Nuts and Kernels
Roasting is the most common way for pistachio nuts processing, and the purpose of that was to increase the products total acceptability. Purpose of this study was to investigate the effect of temperature (90, 120 and 150°C), time (20, 35 and 50 min), and roasting air velocity (0.5, 1.5 and 2.5 m/s) on geometrical attributes of pistachio nuts and kernels including principle dimensions, shape fac...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملInverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملModeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network
Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2004